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Machine learning understands residential  por tfol ios

Executive Summary

Artificial intelligence (AI) and especially machine learning (ML) methods increasingly 
offer valuable alternatives to answer questions in real estate research and practice. 

We investigate whether ML methods are suitable of estimating residential rents by 
comparing a conventional hedonic model with four ML algorithms, namely Support 
Vector Regression (SVR), Random Forest Regression (RFR), Gradient Tree Boosting 
(GTB) and eXtreme Gradient Boosting (XGB). We find ML methods to model rental 
values more precisely than traditional linear regression. 

We use these findings to estimate rental values for an institutionally managed 
portfolio and match them with their corresponding contract rents. 

The results show that apartments tend to be underrented, with ML models indicating 
higher deviation of estimated and contract rents than linear Ordinary Least Squares 
(OLS) models. 

Thus, our findings indicate that non-linear thinking reveals potential benefits when 
applying ML hedonic models in the area of residential markets and portfolios.
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INTRODUCTION

Rents are “a single‐dimensional summary of the 

market's valuation of all the physical, service and 

locational attributes […]” (J. Goodman, 2004; 

Verbrugge et al., 2017). In other words, every single 

characteristic of a residential property should be 

priced in and thus, ultimately contributes to the rent 

that the market will accept. However, prices for 

individual attributes are not fixed. Researchers have 

long tried to fathom the connections between the 

characteristics of a property and its associated rent. 

While rather conventional statistical methods such as 

Ordinary Least Squares (OLS) still represent the 

preferred statistical tool, new possibilities arise from 

the field of artificial intelligence (AI).

While these new methods are increasingly used 

outside of real estate, they have only been applied in 

limited use cases in the analysis of residential rents. 

This paper investigates whether hedonic machine 

learning (ML) methods are capable of providing new 

insights and applications in residential rental 

markets. The subject of rents and how market 

participants can use AI to assess and verify 

investment decisions has, however, not yet been 

investigated in depth. Consequently, literature on 

this topic is scarce even though new tools seem to 

have capabilities that may outperform conventional 

hedonic methods. 

The aim of this study is to shed light on the 

application of algorithm-driven methods in rental 

markets. Most importantly, we assess the value that 

investment managers might obtain when managing a 

residential real estate portfolio based on ML 

methods as opposed to fundamental analysis via the 

Ordinary Least Squares. Consequently, we assess 

how accurate linear and algorithm-driven hedonic 

models predict rents based on a large data set and 

transfer these findings to an institutionally managed 

residential portfolio. Thus, we estimate rental values 

an investor could expect for the portfolio apartments 

in re-lettings scenarios. Further, we compare them to 

their corresponding contract rents to find out 

whether the different models would estimate a 

potential (or need) for rental adjustments. 

S E C T I O N  O N ES E C T I O N  O N E
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HEDONIC MODELLING IN THE REAL ESTATE LITERATURE

The aim of hedonic modelling is to better understand the fundamental factors affecting property rents and prices. By expressing 

the rent of an apartment as the sum of its estimated individual characteristics, hedonic modelling can be used for inferential 

and predictive purposes. Traditionally, a hedonic model employs multiple linear regression to establish the relationship between

the response and the corresponding hedonic characteristics (Rosen, 1974, A. C. Goodman, 1978). Depending on the spatial 

characteristics of the market under investigation and the data structure, a hedonic model needs to fulfil a minimum number of

assumptions (see e.g. Sirmans et al., 2005 and Bourassa et al., 2007).  However, several authors such as Lai et al. (2008), 

Bourassa et al. (2010) and Cajias (2018) have demonstrated the limited explanatory power of traditional hedonic models and 

shown that statistical developments such as the inclusion of spatial and non-linear effects lead to significant enhancements in 

model accuracy (see more: Fik et al., 2003; Lin et al., 2009; Banzhaf & Farooque, 2013).

S E C T I O N  O N E

Over the last decade, advances in computational power and ML algorithms have enabled the development of modern 

regression techniques. By abandoning the previously mandatory functional form of the relationship between the response and 

the covariates, a variety of ML algorithms emerged – such as Gradient Boosting Trees (GTB) (Friedman, 2001), Random Forest 

Regression (RFR) (Breiman, 2001) and Support Vector Regression (SVR) (Smola & Schölkopf, 2004). Given the goal of ML 

methods is to maximize explanatory power and prediction accuracy, real estate literature has identified these to be well suited 

for predictive questions.  

Especially for ML methods, most studies within the hedonic modelling literature focus on real estate prices. Far less is known 

about explaining and modelling rental values by applying ML approaches. Early research estimated the determinates of rental 

values (Sirmans et al., 1989; Kee & Walt, 1996). Recent studies on the rental housing market, including Thomschke (2015), 

Zhang and Yi (2017) and Cajias and Ertl (2018), show that traditional methods are still able to estimate property rents properly. 

While, for example, V. James et al. (2005) use spatial models to predict apartment rents, Cajias (2018) shows that semi-

parametric models are capable of improving model accuracy by accounting for non-linear relationships in rental markets.

Even though there is a growing body of literature on the topic, further investigation is needed due to various reasons:

S E C T I O N  T W O

Literature is rather silent when it comes to a holistic comparison of various ML approaches for 
evaluating the varying performance measurements of different algorithms. 

Property rents have not been analyzed in depth so far in an ML context, to the best of our knowledge.

The emerging velocity and volume of real estate data through MLS enables new insights to real estate 
markets and provides a promising field of research, since “one of the main approaches to face [such 
data sources] is machine learning” (Pérez-Rave et al., 2019). 

The potential of ML applications for market participants to derive well-founded decisions in real estate 
markets has not yet been fully explored nor used. 

Factors considered and augmented for the hedonic model

Willingness 
to pay for 

space

Theoretical framework for connecting individual‘s utility function for real estate with the supply of local amenities

Structural 
property 

characteristics: 
Size, garage, 

number of rooms

Local socio-
economic and 
public sector: 

Unemployment, 
social conditions, 
quality of schools

Property rights 
or legal 

constraints: 
Local legal 

aspects 

Locational and 
accessibility 

characteristics:
Access to shops, 
rail links, roads, 
urban centres

Environmental 
and 

neighbourhood 
characteristics: 

Landscape, 
wildlife, air 

quality, tree cover

Source: PATRIZIA own depiction, Deriving the willingness to pay for real estate with hedonics. 
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DESCRIPTION OF DATA

This study encompasses the residential real estate market in Munich, Germany. With approximately 1.5 million residents and an

annual growth rate of about 0.75%, Munich is the third largest city in Germany. The city and its metropolitan areas have one of 

the most prospering economies in Germany, accommodating several globally active companies in sectors such as automotive, 

environmental techniques, information and communication, insurance, life sciences and medicine. Stable economic growth and 

good employment conditions have yielded a positive development of the residential market throughout the last decade.

To analyse the rental market in Munich, we use two different data sets: First, asking data from MLS enables us to estimate and 

compare the predictive performance of the applied hedonic models. Based on the derived values, we then estimate rental 

values for a residential portfolio of institutionally managed apartments and compare the estimates to the observed contract 

rents.

The use of asking data can be advantageous as it offers the possibility to capture and rapidly reveal market movements. Y. 

Chen et al. (2016) and Baldominos et al. (2018) argue that it is more appropriate for modelling timely dynamics of housing 

markets on a fine-scale level. Moreover, MLS asking data can overcome the challenges raised by the general lack of European 

housing contract data which is mentioned, for instance, by Rondinelli and Veronese (2011). It is actively used for empirical 

research by several authors such as Hanson and Hawley (2011), Rae (2014), Gröbel and Thomschke (2018), Pérez-Rave et al. 

(2019) and Gröbel (2019) for studies in Germany, the US and the UK. As Pérez-Rave et al. (2019) state, MLS data shows 

important characteristics of big data in terms of volume, variety and value. This enables researchers and market participants to

overcome temporal delays and limited analyses on market developments that are associated with, for example, official 

statistics. 

S E C T I O N  O N ES E C T I O N  T H R E E

Description of data

Market Data from MLS

In this context, MLS are perceived as “one of the most significant feature of today’s real estate 
industry” (Li & Yavas, 2015). Due to the characteristics of the Munich residential real estate 
market, we expect the asking rents to be a good approximation for market-conform rental 
values. Although asking data plays a significant role in housing markets (see e.g. Shimizu et al., 
2016, Han & Strange, 2016), differences to transaction data can occur that need to be kept in 
mind.

Source: PATRIZIA, Google maps

Market data
N=65.743

Q1 2013 – Q2 2019

Portfolio data
N=716

Q2 2019
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To assess the performance of hedonic models, our study comprises a dataset of 65,743 

residential apartments in Munich, including hedonic characteristics, socio-economic information 

and distance variables, from January 2013 to June 2019. To avoid sample bias for the 

investigation of Munich’s residential market that is mainly dominated by apartments, we exclude 

single houses as well as semi-detached and terraced houses. Furthermore, highly specialized 

market segments like student apartments, senior living accommodations, furnished co-living 

spaces, and short-stay apartments are not considered.

We access Value Marktdaten, one of the largest providers of real estate data in the German 

residential market. It uses web-scraping techniques for collecting, preparing and integrating real 

estate listings from more than 120 different MLS with full hedonic characteristics.  Furthermore, 

we include socio-economic data from Growth from Knowledge (GfK), Germany’s largest market 

research institute. We also add a gravity layer using data from Eurostat and the German statistical 

office to implicitly enable the models to account for spatial information. Finally, we complement 

each georeferenced residential data point by an amenities layer measuring the Euclidean 

proximity to important amenities. This information is gathered from Open Street Map (OSM) and 

Google via an API in R (R Core Team, 2016).  

This results in a dataset comprising eight structural characteristics (living area, age and whether 

the apartment has a bathtub, built-in kitchen, parking lot, terrace, balcony and an elevator), two 

socio-economic (number of households and households purchasing power in ZIP code area), and 

seven distance variables (proximity to bus station, park, school, subway, supermarket, 

neighbourhood centre and city centre). Rent, living area, distances as well as both socio-economic 

characteristics are incorporated using their log-transformation to account for the distribution. 

Quarter and year dummies are used to control for time effects. 

S E C T I O N  O N ES E C T I O N  T H R E E

Extraction-Load-Transform (ELT) process for estimating hedonic market models

Source: PATRIZIA own depiction
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We find a mean asking rent of 1,238 EUR/p.m. (euros per month), with rental values ranging from 123.97 EUR/p.m. up to 

10,764 EUR/p.m. An average apartment is 76.49 sqm (square meters), comprises approximately three rooms, and was built in 

1975. Each apartment is on average 1.44 km distant from the subway, 0.76 km from a supermarket and 0.56 km from the next 

school. Moreover, the city centre is on average 4.62 km away, the centre of the corresponding ZIP code is in 0.60 km distance. 

The mean number of households in a ZIP area accounts for 11,423 with a mean purchasing power of 59,855 EUR each. 

In addition to the obtained data through MLS, we use data of a managed residential real estate portfolio. The portfolio consists

of 716 apartments located in Munich, comprising contract rents and the same explanatory variables as presented in the 

previous section. An average apartment in the portfolio contains 71.99 sqm and yields a rental income of 1,009.37 EUR/p.m. 

The distance to the city centre of 6.77 km is about 2 km further than the distance of an average apartment, but the distance to 

the centre of the related ZIP code is with 0.50 km 200 m shorter. Moreover, the distances to all important infrastructure 

facilities is on average closer compared to the apartments in the previous dataset. Purchasing power and number of households

are about the same. We again consider additional hedonic characteristics and time controls as dummy variables.

S E C T I O N  O N E

Notes: This exhibit reports the summary statistics comprising data from January 2013 to June 2019. Age is calculated as the difference from building age to 
the year 2017. All distance variables are calculated as the distance to the specific apartment in kilometers. Binary variables report whether the apartment 
includes a certain characteristic (1) or not (0). Rent is presented as euro per month. Information on households is reported on ZIP level. SD: standard 
deviation, Min: minimum value, Max: maximum value.

S E C T I O N  T H R E E

Por tfol io Data

Variable name Unit Spatial reference Source Mean Median SD Min Max
Living Area sqm Apartment Value Marktdaten 76.49 71.00 36.49 10.00 435.00
Age relative to 2017 Integer Apartment Value Marktdaten 42.36 41.00 33.84 -2.00 118.00
Centroid ZIP km Distances Google/OSM 0.60 0.53 0.38 0.00 2.43
Centroid NUTS km Distances Google/OSM 4.62 4.57 2.08 0.22 12.33
Rent EUR/p.m. Apartment Value Marktdaten 1,238.00 1,079.34 721.82 123.97 10,764.00
Number of households (HH) HH/ZIP ZIP GfK 11,423.00 11,768.00 3,305.76 1,860.00 16,978.00
Household purchasing power EUR/HH/ZIP ZIP GfK 59,855.00 58,849.80 5,501.76 46,170.00 71,765.00
Bus km Distances Google/OSM 1.14 0.75 1.10 0.00 6.20
Park km Distances Google/OSM 0.79 0.44 0.92 0.00 4.75
School km Distances Google/OSM 0.56 0.24 0.85 0.00 4.89
Subway km Distances Google/OSM 1.44 0.75 1.67 0.00 11.76
Supermarket km Distances Google/OSM 0.76 0.35 1.03 0.00 5.16
Bathtub Binary Apartment Value Marktdaten 0.54 1 0.5 0 1
Built-in kitchen Binary Apartment Value Marktdaten 0.68 1 0.47 0 1
Parking lot Binary Apartment Value Marktdaten 0.62 1 0.49 0 1
Terrace Binary Apartment Value Marktdaten 0.18 0 0.38 0 1
Balcony Binary Apartment Value Marktdaten 0.63 1 0.48 0 1
Elevator Binary Apartment Value Marktdaten 0.56 1 0.5 0 1

Variable name Unit Spatial reference Source Mean Median SD Min Max
Living Area sqm Apartment PATRIZIA 71.99 75.56 30.59 20.92 179.79

Age relative to 2017 Integer Apartment PATRIZIA 37.91 46.00 29.64 1.00 90.00

Centroid ZIP km Distances Google/OSM 0.50 0.50 0.28 0.20 1.00

Centroid NUTS km Distances Google/OSM 6.77 6.00 5.24 1.70 19.00

Rent EUR/p.m. Apartment PATRIZIA 1,009.37 938.61 469.33 204.52 3,179.67

Number of households (HH) HH/ZIP ZIP GfK 13,200.98 13,662.00 2,321.27 9,720.00 16,256.00

Household purchasing power EUR/HH/ZIP ZIP GfK 55,441.53 54,496.47 3,309.16 52,045.09 63,720.57

Bus km Distances Google/OSM 0.92 0.64 0.83 0.13 2.77

Park km Distances Google/OSM 0.65 0.68 0.26 0.29 1.14

School km Distances Google/OSM 0.57 0.43 0.23 0.26 0.92

Subway km Distances Google/OSM 0.60 0.53 0.26 0.13 1.01

Supermarket km Distances Google/OSM 0.58 0.66 0.23 0.01 0.87

Bathtub Binary Apartment PATRIZIA 0.50 1 0.10 0 1

Built-in kitchen Binary Apartment PATRIZIA 0.21 0 0.41 0 1

Parking lot Binary Apartment PATRIZIA 0.50 1 0.10 0 1

Terrace Binary Apartment PATRIZIA 0.06 0 0.25 0 1

Balcony Binary Apartment PATRIZIA 0.94 1 0.23 0 1

Elevator Binary Apartment PATRIZIA 0.63 1 0.48 0 1

Descriptive statistics of the MLS data

Descriptive statistics of the portfolio

Notes: This exhibit reports the summary statistics comprising data from June 2019. Age is calculated as the difference of the building age to the year 2017. 
All distance variables are calculated as the distance to the specific apartment in kilometers. Binary variables report whether the apartment includes a 
certain characteristic (1) or not (0). Rent is presented as euro per month. Information on households is reported on ZIP level. SD: standard deviation, Min: 
minimum value, Max: maximum value.
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METHODOLOGY

Our analysis comprises two components. In the first part, we apply five hedonic models and estimate rental values based on the 

MLS data. Several error measures are used to compare the results to determine the model’s predictive performance. The 

methods and error measures are presented below. In the second part, we transfer the findings and model specifications to the 

portfolio dataset. Comparing the estimated rents to their contract rents enables us to identify to what extent a possible 

potential (or need) for rental adjustments exists as well as to highlight which new insights the investment manager can get 

when applying ML methods in their rental estimation.

S E C T I O N  O N E

Source: PATRIZIA, Notes: This exhibit shows the machine learning methods.  ε=estimation errors; ξ=error penalization; w=predicted value and c=weight of penalization. 
OLS = Ordinary least squares; SVR = Support vector regression; RFR = Random forest regression; GTB = Gradient tree boosting; XGB= Extreme gradient boosting.

The analysis encompasses one linear and four ML models. We follow Zurada et al. (2011) and Chin et al. (2020) by choosing 

OLS as the base case for the comparison of several algorithm-driven hedonic models. OLS is a widespread variant for hedonic 

modelling and consequently a well-known and easy interpretable benchmark for performance analysis. SVR, RFR, GTB and 

eXtreme Gradient Boosting (XGB) represent the modern approaches that will be applied in our analysis. Except for XGB, all 

methods have been used for real estate related questions in areas such as valuation. XGB is a method developed in the last few 

years that shows computational advantages especially in large data sets. In the following, we discuss the basic structure of 

each hedonic method under investigation:

S E C T I O N  F O U R

Hedon ic  Mode l l i ng  wi th  Trad i t i on a l  and  Mach ine  Learn in g  Method s  

Overview of machine learning algorithms 

Ordinary Least Squares Regression – OLS

The rent y of property 𝑖 is described as the sum of the 

predicted values of its 𝑗 characteristics 𝑥𝑖𝑗. By making use of 

OLS as a parametric optimization procedure, the estimated 

parameters 𝛽𝑗 are achieved by minimizing the sum of the 

squared residuals as a loss function. The linear relationships 

are valid for the entire population whenever the Gauss-

Markov theorem is valid, that is, the estimators are the best 

linear unbiased estimators of the observed market values. 

Several statistical instruments can be further employed to 

increase the explanatory power, such as interaction terms, 

polynomial effects, and spatial effects.

Machine Learning Methods

ML techniques can identify complex structures and patterns. 

They provide high flexibility by avoiding the assumption of a 

specific functional form between the response and 

independent variables and are at the same time able to learn 

from the underlying data and optimize the predictive model. 

By dividing the dataset into a training and test set, overfitting 

within the training set (in-sample) is penalized by poor out-of-

sample accuracy within the test set. Removing the test set 

during the learning process could mean that important 

patterns within the data remain unnoticed. The resampling 

approach within this study makes use of a 5-fold cross-

validation technique with a 75:25 ratio between the train and 

the test sets based on random sampling. 

Model

Model

Model

Model

Model

y𝑖

Multi-stage algorithm-driven methods

Gradient tree 
boosting & 

Extreme Gradient 
Boosting

Learn

Learn

Learn

Learn

Model

y𝑖

Random 
forest

Traditional method 

Ordinary least squares
𝑦𝑖 = 𝛽0 +෍

𝑗=1

𝐽

𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖

Single algorithm-driven methods

Support vector
machine

min
1

2
𝑤 2 + 𝑐 σ𝑖=1

𝑙 ( 𝜉𝑖 + 𝜉𝑖
∗)

subject to: ൞

𝑦𝑖− 𝑤, 𝑥 − 𝑏 ≤ 𝜀 + 𝜉𝑖
− 𝑦𝑖 + 𝑤, 𝑥 + 𝑏 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

Regression 
trees

min

෍

)𝑖:𝑥𝑖∈𝑡1(𝑖,𝑠

𝑦𝑖 − ෤𝑦𝑡1
2
+

෍

)𝑖:𝑥𝑖∈𝑡2(𝑖,𝑠

𝑦𝑖 − ෤𝑦𝑡2
2
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METHODOLOGY: Error-based Comparison of Model Per formance
Following Zurada et al. (2011), Schulz et al. (2014) and Mayer et al. (2019), we use mean absolute error (MAE), mean absolute 

percentage error (MAPE), root mean squared error (RMSE) and coefficient of determination R² to conclude on the accuracy of 

the applied methods. We furthermore investigate the precision regarding over- or underestimation by applying the mean 

percentage error (MPE). While similar research give little attention to the dispersion of the errors within the prediction, we 

discuss error buckets (PE10 and PE20), coefficient of dispersion (COD) and inter-quartile-range (IQR) to assess the magnitude 

of the estimation errors. By looking at the accuracy, precision and dispersion, we aim to derive further insights on the 

differences between the applied ML methods. 

S E C T I O N  O N ES E C T I O N  F O U R

Error-based measurements on the predictive performance

Accuracy

Mean Absolute Error (MAE) 𝑀𝐴𝐸 𝑦, ො𝑦 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖 Average of all absolute errors. Lower 
MAE signals higher precision in units

Root Mean 
Squared Error (RMSE)

𝑅𝑀𝑆𝐸 𝑦, ො𝑦 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖 2 Average of squared residuals. In contrast 
to MAE, RMSE penalizes high deviations

Mean Absolute 
Percentage Error (MAPE)

𝑀𝐴𝑃𝐸 𝑦, ො𝑦 =
1

𝑛
෍

𝑖=1

𝑛
𝑦𝑖 − ො𝑦𝑖
𝑦𝑖

Average of all absolute percentage 
errors. Lower MAPE signals higher 
accuracy in percent

R² 𝑅2 𝑦, ො𝑦 = 1 −
σ𝑖=1
𝑛 (𝑦𝑖 − ො𝑦𝑖)

2

σ𝑖=1
𝑛 (𝑦𝑖 − ത𝑦)2 Goodness of fit of the model

Precision

Mean Error (ME) 𝑀𝐸 𝑦, ො𝑦 =
1

𝑛
෍

𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖) Average of difference between observed 
and predicted value

Mean Percentage 
Error (MPE)

𝑀𝑃𝐸 𝑦, ො𝑦 =
1

𝑛
෍

𝑖=1

𝑛
𝑦𝑖 − ො𝑦𝑖
𝑦𝑖

Positive and negative errors cancel out 
due to the lacking absolute value 
operation. Positive (negative) MPE signals 
underestimation (overestimation)

Dispersion

Error buckets (PE(x)) 𝑃𝐸 𝑥 = 100
𝑦𝑖 − ො𝑦𝑖
𝑦𝑖

< 𝑥
Percentage of predictions where the 
percentage error is less than x%, with x 
being set to 10 and 20

Coefficient of 
Dispersion (COD)

𝐶𝑂𝐷 =
100

𝑛

σ𝑖=1
𝑛 (

ො𝑦𝑖
𝑦𝑖
−𝑀𝑒𝑑𝑖𝑎𝑛

ො𝑦𝑖
𝑦𝑖

)

𝑀𝑒𝑑𝑖𝑎𝑛(
ො𝑦𝑖
𝑦𝑖
)

Ratio of the mean deviation from 
prediction errors to the median 
prediction error, divided by the median

Inter-Quartile Range (IQR) 𝐼𝑄𝑅 = (𝑦𝑖 − ො𝑦𝑖)75−(𝑦𝑖 − ො𝑦𝑖)25
Range in terms of the difference between 
the 75th and 25th percentile of the 
distribution of the prediction error
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ECONOMETRIC RESULTS: Predict ive Per formance of Models 

We find all ML methods to be more accurate in 

modelling rents than traditional OLS regression. While 

OLS provides on average highest absolute rental 

estimation errors (MAE), we find all ML methods to 

considerably increase the model accuracy, with RFR 

being most accurate. The graphical analysis regarding 

median and quantiles underpin the findings. To illustrate 

these results, we convert the MAE to EUR/sqm, dividing 

it by the size of an average apartment of 76.49 sqm. The 

estimation error decreases from 2.34 EUR/sqm (OLS) to 

1.52 EUR/sqm (RFR). Regarding the RMSE, which differs 

from the MAE by penalizing extreme deviations, the 

results show a similar picture. Compared to OLS, all ML 

methods are more robust to extreme deviations. These 

findings complement the results of Bogin and Shui 

(2020).

While OLS shows an R² of 81.65%, GTB and RFR areable

to explain approximately 90% of the deviation. Ho et al.

S E C T I O N  O N E

Notes: This exhibit reports the error-based measurements on the predictive 
performance through MAE, RMSE, MAPE and R². ME and MPE indicate over- or 
underestimation. PE10, PE20, IQR and COD show the dispersion. All measures are 
out-of-sample (test set) and are based on the calculations presented in Exhibit 9. 
Absolute values are reported in euro per month. Relative values are reported in 
percent. Source: Own calculation.

S E C T I O N  F I V E

Unit OLS SVR GTB XGB RFR

MAE
EUR/p.m. 271.14 201.84 189.52 203.61 212.35

EUR/sqm/p.m. 3.54 2.64 2.48 2.66 2.78

RMSE EUR 418.86 303.76 292.20 320.88 366.93

MAPE % 24.00 15.69 15.02 16.08 16.77

R² % 80.12% 84.39% 86.39% 84.60% 83.93%

ME EUR 177.59 10.54 26.13 42.26 108.20

MPE % 15.47 1.16 1.13 1.94 6.61

PE10 % 29.54% 42.12% 44.38% 41.42% 43.21%

PE20 % 57.22% 70.46% 74.22% 70.89% 72.75%

IQR EUR 322.61 275.89 258.27 274.44 273.39

COD % 1.94 -9.73 79.99 25.80 4.09

Error-based comparison of model forecasting at market level

Graphical error-based comparison of model forecasting at market level

Notes: The box represents 50% of the data within the quantiles 25% and 75%. The line measures the median, that is, the quantile 50%. The antennas cover the 5% and 95% 
range of the data. Source: Own depiction.

(2020) find similar results for housing transactions. Wu et al. (2008) and Y. Chen et al. (2016) show SVR to be robust and also 

accurate in modelling property prices and rents. It is therefore not surprising that SVR works well in our setting (R² of 87.79%) 

and is similar to ensemble learners such as XGB and GTB. A look at the MAPE shows that traditional OLS misestimates the 

observed rents by 15.60% on average, while RFR improves model accuracy with an average misspecification of about 10%. 

These findings corroborate the results of Hu et al. (2019), who also show the tree-based bagging algorithm RFR to be most 

suitable for modelling property rents. Regarding transactions prices, Baldominos et al. (2018) likewise highlight ensembles of 

regression trees to perform best. 

The median percentage deviation of all our ML methods is below 10%, as displayed in the boxplots. 
Therefore, we conclude ML algorithms to be capable of precisely modelling rents.

As Fik et al. (2003) state, Freddie Mac early suggested that at least 50% of the predicted sale prices of 
residential properties should be within 10% of the true value. In common real estate valuation practice, 
the estimated value of a property is allowed to vary 10% to 20% from its market value. Transferring this 
to rents, all our models yield satisfactory results. 
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ECONOMETRIC RESULTS: Predict ive Per formance of Models 

Aside from the previously analyzed accuracy, the quality of an estimation is additionally influenced by its precision which 
indicates whether hedonic models predict values that are on average above or below observed rents. In the field of property 

valuations, Bogin and Shui (2020) find real estate prices often to be overestimated, resulting in problems for mortgage lending. 
In the case of residential rents, we propose overestimated rental values to be less problematic for market participants, given 
that tenants are expected to react to landlords’ high rental expectations with contract negotiations. In contrast, 
underestimations would lead to rental values that are below market level and mean landlords miss income. 

In addition, the dispersion of the estimation adds another possibility for investigation. The boxplots of MPE show a symmetric 

distribution of all methods, indicating no general bias for traditional as well as ML variants. PE10 calculates the percentage of 
observations with a deviation of less than 10%. This metric can also be referred to as ‘hit rate’. While OLS can estimate 40.65% 
of all observations within this range, algorithm-driven RFR models estimate 62.62% correctly. Within a deviation of +/-20%, we 
find all ML methods exceed 84%. The IQR draws a similar picture. While OLS estimates 50% of all observed values within a 

range of 1.68 EUR/sqm above or below the median, the ML models significantly decrease the range of deviations (+/-1.00 
EUR/sqm).  The COD also confirms these results. 

To verify the robustness of our results especially in terms of general applicability, we run all methods on an additional sample of 
rents from July 2019 to September 2019. The model specifications are the same as in the previous analysis. They consequently 

provide error-based measurements for a one-period-ahead out-of-sample forecast. Our findings are equivalent to the findings in 
the original dataset. An upward shift in all error-based measurements can be traced back to thriving residential real estate 
markets in German metropolitan areas – especially in Munich. Bogin and Shui (2020) find RFR to be prone to overfitting. We can 
corroborate their results. While RFR performs best when it comes to the original dataset, we now find all other ML methods to

be more accurate in forecasting future rents. Regarding RMSE as well as PE10 and PE20, the results indicate that RFR seems to
show some misspecification for high deviations. We suggest RFR fits extreme values generally well but fails to explain them 
within new sample of future rents as it shows the highest RMSE besides OLS, but good results for PE10 and PE20.

To summarize, the key facts in the first part of our analysis are:

S E C T I O N  O N ES E C T I O N  F I V E

In terms of accuracy, all ML methods are more 
accurate in modelling rents than OLS with RFR 
performing best. 

All methods underestimate observed values on 
average although the extent of underestimation 
is low.

ML methods bear less risk than OLS due to a 
lower amount of misspecification. 

SVR shows similar results to the tree-based ML 
methods (RFR, GTB and XGB).

RFR appears to be prone to overfitting whereas 
boosting methods (GTB and XGB) are more 
robust. 

Altogether, a reasonable 
explanation for the better 

performance of ML methods can 
be given by the fact that they are 

able to capture non-linear and 
non-normal relationships (Pace & 

Hayunga, 2020; Bogin & Shui, 
2020). 

Because non-linearity is an 
important characteristic of real 

estate markets, the application of 
ML techniques provides more 

accurate estimates of residential 
rents.

The positive MPEs indicate that all methods underestimate the observed rental value on average.

ML methods are not only more accurate on average, but the error dispersion is also lower 
leading to a better predictive performance.
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The previous results demonstrate that both traditional 

and ML methods can mimic the price formation in 

residential rental markets. By means of the previous 

model specifications, the models can estimate a rental 

value an investor could expect in a re-letting scenario. 

We transfer this knowledge to the portfolio data to 

estimate a rent for every apartment based on their 

hedonic, socio-economic and spatial characteristics. A 

comparison of the estimated rent with the actual 

contract rent provides information on the feasibility of 

rental adjustments when re-letting apartments from 

the portfolio. In a first step, we use MAE, RMSE and 

MAPE to analyze the accuracy.

The OLS displays the lowest absolute error. All ML 

methods show a considerably higher deviation within 

their estimation. While OLS only allows for an average 

estimation error of 2.20 EUR/sqm, tree-based 

methods RFR, GTB and XGB result in an average 

deviation of 2.34 to 2.75 EUR/sqm. RMSE and MAPE 

underpin these findings. 

Furthermore, it is noticeable that SVR shows the 

highest deviation of portfolio rents from estimated 

rents, with an MAE of 3.73 EUR/sqm, which requires a 

deeper discussion. SVR is very sensitive to the choice 

of support vectors and tends to neglect the 

informational content of observations within the 

threshold area that defines the hyperplane. Because 

investors usually follow predefined investment goals 

when acquiring their portfolio apartments, 

specifications in the portfolio dataset can result in 

biased estimations of rental values for the portfolio 

observations when applying SVR. We assume its poor 

performance to be attributed to the difficulties 

encountered in correctly modelling the portfolio data 

and therefore exclude SVR in the following comparison.

S E C T I O N  O N E

Notes: This exhibit reports the model accuracy through MAE, RMSE and MAPE. PE20 shows the 
dispersion. All measures are based on the calculations presented in Exhibit 9 in the Appendix. 
Absolute values are reported in euro per month. Relative values are reported in percent. Source: 
Own calculation. 

S E C T I O N  F I V E

Error-based comparison of model performance at portfolio level 

Graphical error-based comparison of model performance 

at portfolio level

Notes: The box represents 50% of the data within the quantiles 25% and 75%. The line 
measures the median, that is, the quantile 50%. The antennas cover the 5% and 95% range 
of the data. Source: Own depiction.

Unit OLS SVR GTB XGB RFR

MAE
EUR/p.m. 

EUR/sqm/p.m.
158.64 

2.20
268.51 

3.73
197.79

2.75
195.59

2.72
168.44

2.34
RMSE EUR/p.m. 211.29 323.94 256.58 261.39 222.84
MAPE % 15.70 25.83 17.74 17.64 16.24
PE20 % 68.44 45.39 62.43 62.43 63.39

ECONOMETRIC RESULTS: Rental  predict ion at por tfol io level

Interestingly, the performance of the ML 
methods is contrary to the previous findings. 
Hence, a look at the models’ ‘hit rate’ reveals: 

While tree-based methods can estimate about 63% 
of all observed rents within a deviation of +/-20%, 

OLS is able to model 68% accurately. For the 
portfolio data, we can consequently conclude that 

linear OLS leads to more accurate estimates. 
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An investment manager that “thinks 
OLS” would underestimate possible 

rental changes in upcoming re-letting 
negotiations. The underestimation 
results from the high concordance 
between OLS and contract rents. 

ECONOMETRIC RESULTS: Rental  predict ion at por tfol io level

S E C T I O N  O N E

To assess to which extent this rental potential exists and consequently 

whether portfolio apartments are under- or overrented, we calculate the 

relative difference of estimated rents to contract rents. All models indicate 

that contract rents are below estimated rents. While OLS indicates portfolio 

apartments to be underrented by 4.95% (0.87 EUR/sqm) on average, 

algorithm-driven hedonic models signal contract rents to be 12.54% (1.67 

EUR/sqm) (RFR) to 14.81% (2.29 EUR/sqm) (GTB) below estimated rents. 

Our results are robust even if we exclude the highest and lowest 5%-quantile 

and 10%-quantile, respectively. The fact that all models show underrented

situations is intuitive, especially in metropolitan areas in Germany, since 

rental growth in the residential real estate market exceeds inflation and 

hence, contract rents lag behind.

However, given current market practice, the following must be considered 

additionally: Contractual arrangements on lease term and rental adjustments, 

specific regulations in rental markets and further legal peculiarities between 

landlords and tenants impede the realization of the full rental potential. 

Nevertheless, the sole identification in this case provides investors with 

valuable possibilities to derive investment decisions. Aside from the linearity 

perception of an investor, another possible reason contributing to OLS’ high 

performance, is the rather homogenous composition of the portfolio, whose 

data structure can be well captured by linear models. Moreover, considering 

the general economics of property management, another possible 

explanation becomes apparent: A residential manager is contractually not 

incentivized to achieve the highest rents but rather to focus on minimizing 

costs, again, favoring OLS which does not capture high rental deviations. 

These complementary explanations should be examined in more detail if the 

ML methods are to be used in real case scenarios.

S E C T I O N  F I V E

Notes: This exhibit reports the average rental lift potential. Relative values are calculated as the 
difference between contract rent and estimated rent as % of contract rent. Absolute values are 
calculated as the same difference divided by the rental area. The column ‘All’ includes results for 
the whole sample, while q5 & q95 excludes observations of the highest and lowest 5% quantile 
and q10 & q90 of the highest and lowest 10% quantile, respectively. Source: Own calculation. *** 
denotes whether the mean is significantly different from the observed mean on a significance level 
of 1%. * denotes whether the mean is significantly different from the OLS mean on a significance 
level of 10%.

Method
As % of contract rents 

(MPE)
As rent in EUR/sqm 

(ME/sqm)
All Q5 & Q95 Q10 & Q90 All Q5 & Q95 Q10 & Q90

OLS -4.95% * -4.85%* -4.75%* -0.87* -1.02* -1.09*

GTB -14.81% *** -14.13%*** -13.64%*** -2.29*** -2.32*** -2.34***

XGB -14.56%*** -13.99%*** -13.59%*** -2.21*** -2.30*** -2.36***

RFR -12.54%*** -12.10%*** -11.91%*** -1.67*** -1.82*** -1.92***

Average potential for rental increases

A low error measurement and low 
average deviation indicates that 

estimated rents are to a large 
extent in line with observed 

contract rents. Because estimated 
rents represent a rental value a 

landlord could expect in re-lettings, 
OLS with the lowest error 

measures would indicate a low 
potential for rental adjustments. 

In contrast, ML models show 
considerably higher deviations. 

Because these models have 
confirmed a higher predictive 
performance, we assume that 

estimates from ML models more 
accurately reflect the potential rental 

value in re-letting. 

The results indicate that ML methods 
can identify higher rental potentials 

that can be used by investment 
managers to manage portfolios more 

accurately.

An investment manager using OLS 
underestimates the rental-lift 

potential in his portfolio. By ‘thinking 
linear’, he assumes that contract 

rents are in line with estimated rents 
to a high extent. In contrast, our 

study reveals that ML methods show 
the potential for rental increases to 

be 2x to 3x times higher. 
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Because non-linearity is an important characteristic of real estate markets, the application 

of ML techniques provides more accurate estimates of residential rents.

Both traditional linear and ML methods perform well in explaining residential rents. 

However, algorithm-driven models are more accurate.

Linear models misestimates observed market rents by 15.6% (2.34 EUR/sqm), whilst tree-

based machine learning (ML) models show the highest accuracy by reducing the absolute 

estimation error to 10.16% (1.52 EUR/sqm). 

Based on an institutional residential portfolio, linear models indicate that contract rents 

are only 4.95% below estimated rents, whilst ML models identify potential for rental 

increases that is two to three times higher.

An investment manager that “thinks linearly” would underestimate possible rental changes 

in upcoming re-letting negotiations.

Key takeaways

In this study we investigate the predictive performance of traditional and algorithm-driven 

hedonic models and the added value an application of those methods can provide for an 

investment manager.
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